VIP標(biāo)識 上網(wǎng)做生意,首選VIP會員| 設(shè)為首頁| 加入桌面| | 手機版| RSS訂閱
食品伙伴網(wǎng)服務(wù)號
 

蛋白復(fù)性(四)-淺談蛋白質(zhì)折疊的有關(guān)問題

放大字體  縮小字體 發(fā)布日期:2006-06-28

[摘要] 本文對蛋白質(zhì)折疊這一古老的領(lǐng)域的最新發(fā)展,尤其是分子伴侶的機理作了一番探討,對一些新觀點和新的實驗事實作了介紹,并對一些實驗實事作了一些思考,并提出了一些自己的看法。同時預(yù)測了結(jié)構(gòu)生物學(xué)及技術(shù)手段的發(fā)展趨勢。
[關(guān)鍵字] 生物大分子 分子伴侶 蛋白質(zhì)的折疊 識別 結(jié)合

生物大分子的結(jié)構(gòu)與功能的研究是了解分子水平的先象的基礎(chǔ)。沒有對生物大分子的結(jié)構(gòu)與功能的認識,就沒有分子生物學(xué)。正如沒有DNA雙螺旋結(jié)構(gòu)的發(fā)現(xiàn),就沒有遺傳傳達傳遞的中心法則,也就沒有今天的分子生物學(xué)。結(jié)構(gòu)分子以由第一分子進入對復(fù)和物乃至多亞基,多分子復(fù)和體結(jié)構(gòu)研究。同時,過去難以研究的分子水平上的生命運動情況也隨著研究的深入和技術(shù)手段的發(fā)展而逐漸由難點變?yōu)闊狳c。蛋白質(zhì)晶體學(xué)研究已從生物大分子靜態(tài)(時間統(tǒng)計)的結(jié)構(gòu)分析開始進入動態(tài)(時間分辨)的結(jié)構(gòu)分析及動力學(xué)分析。第十三屆國際生物物理大會的25個專題討論會中有一半以上涉及蛋白質(zhì)的結(jié)構(gòu)與功能,而“結(jié)構(gòu)與功能”又強調(diào)“動力學(xué)(Dynamics)”,即動態(tài)的結(jié)構(gòu)或結(jié)構(gòu)的運動與蛋白質(zhì)分子功能的關(guān)系,以及對大分子相互作用的貢獻。
蛋白質(zhì)折疊問題被列為“21世紀的生物物理學(xué)”的重要課題,它是分子生物學(xué)中心法則尚未解決的一個重大生物學(xué)問題。從一級序列預(yù)測蛋白質(zhì)分子的三級結(jié)構(gòu)并進一步預(yù)測其功能,是極富挑戰(zhàn)性的工作。研究蛋白質(zhì)折疊,尤其是折疊早期過程,即新生肽段的折疊過程是全面的最終闡明中心法則的一個根本問題,在這一領(lǐng)域中,近年來的新發(fā)現(xiàn)對新生肽段能夠自發(fā)進行折疊的傳統(tǒng)概念做了根本的修正。這其中,X射線晶體衍射和各種波譜技術(shù)以及電子顯微鏡技術(shù)等發(fā)揮了極其重要的作用。第十三屆國際生物物理大會上,Nobel獎獲得者Ernst在報告中強調(diào)指出,NMR用于研究蛋白質(zhì)的一個主要優(yōu)點在于它能極為詳細的研究蛋白質(zhì)分子的動力學(xué),即動態(tài)的結(jié)構(gòu)或結(jié)構(gòu)的運動與蛋白質(zhì)分子功能的關(guān)系。目前的NMR技術(shù)已經(jīng)能夠在秒到皮秒的時間域上觀察蛋白質(zhì)結(jié)構(gòu)的運動過程,其中包括主鏈和側(cè)鏈的運動,以及在各種不同的溫度和壓力下蛋白質(zhì)的折疊和去折疊過程。蛋白質(zhì)大分子的結(jié)構(gòu)分析也不僅僅只是解出某個具體的結(jié)構(gòu),而是更加關(guān)注結(jié)構(gòu)的漲落和運動。例如,運輸小分子的酶和蛋白質(zhì)通常存在著兩種構(gòu)象,結(jié)合配體的和未結(jié)合配體的。一種構(gòu)象內(nèi)的結(jié)構(gòu)漲落是構(gòu)象轉(zhuǎn)變所必需的前奏,因此需要把光譜學(xué),波譜學(xué)和X 射線結(jié)構(gòu)分析結(jié)合起來研究結(jié)構(gòu)漲落的平衡,構(gòu)象改變和改變過程中形成的多種中間態(tài),又如,為了了解蛋白質(zhì)是如何折疊的,就必須知道折疊時幾個基本過程的時間尺度和機制,包括二級結(jié)構(gòu)(螺旋和折疊)的形成,卷曲,長程相互作用以及未折疊肽段的全面崩潰。多種技術(shù)用于研究次過程,如快速核磁共振,快速光譜技術(shù)(熒光,遠紫外和近紫外圓二色)。

一、新生肽段折疊研究中的新觀點

長期以來關(guān)于蛋白質(zhì)折疊,形成了自組裝(self-assembly)的主導(dǎo)學(xué)說,因此,在研究新生肽段的折疊時,就很自然的把在體外蛋白質(zhì)折疊研究中得到的規(guī)律推廣到體內(nèi),用變性蛋白的復(fù)性作為新生肽段折疊的模型,并認為細胞中新合成的多肽鏈,不需要別的分子的幫助,不需要額外能量的補充,就應(yīng)該能夠自發(fā)的折疊而形成它的功能狀態(tài)。
1988年,鄒承魯明確指出,新生肽段的折疊在合成早期業(yè)已開始,而不是合成完后才開始進行,隨著肽段的延伸同時折疊,又不斷進行構(gòu)象的調(diào)整,先形成的結(jié)構(gòu)會作用于后合成的肽段的折疊,而后合成的結(jié)構(gòu)又會影響前面已形成的結(jié)構(gòu)的調(diào)整。因此,在肽段延伸過程中形成的結(jié)構(gòu)往往不一定是最終功能蛋白中的結(jié)構(gòu)。這樣,三維結(jié)構(gòu)的形成是一個同時進行著的,協(xié)調(diào)的動態(tài)過程。九十年代一類具有新的生物功能的蛋白,分子伴侶(Molecular chaperone)的發(fā)現(xiàn),以及在更廣泛意義上說的幫助蛋白質(zhì)折疊的輔助蛋白(Accessory protein) 的提出,說明細胞內(nèi)新生肽段的折疊一般意義上說是需要幫助的,而不是自發(fā)進行的。

二、蛋白質(zhì)分子的折疊和分子伴侶的作用

蛋白質(zhì)分子的三維結(jié)構(gòu),除了共價的肽鍵和二硫鍵,還靠大量極其復(fù)雜的弱次級鍵共同作用。因此新生肽段在一邊合成一邊折疊過程中有可能暫時形成在最終成熟蛋白中不存在不該有的結(jié)構(gòu),他們常常是一些疏水表面,它們之間很可能發(fā)生本不應(yīng)該有的錯誤的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自組裝學(xué)說,每一步折疊都是正確的,充分的,必要的。實際上折疊過程是一個正確途徑和錯誤途徑相互競爭的過程,為了提高蛋白質(zhì)生物合成的效率的,應(yīng)該有幫助正確途徑的競爭機制,分子伴侶就是這樣通過進化應(yīng)運而生的。它們的功能是識別新生肽段折疊過程中暫時暴露的錯誤結(jié)構(gòu)的,與之結(jié)合,生成復(fù)和物,從而防止這些表面之間過早的相互作用,阻止不正確的非功能的折疊途徑,抑制不可逆聚合物產(chǎn)生,這樣必然促進折疊向正確方向進行。(從哲學(xué)的觀點說,似乎很容易駁斥自組裝學(xué)說,它違背了矛盾的普遍性原理,試想,如果蛋白質(zhì)的每一步折疊均是正確的,充分的,必要的,豈不是在無任何矛盾的前提下,完成了復(fù)雜的最穩(wěn)定構(gòu)象的形成,即完成了由量變到質(zhì)變的偉大飛躍,從無活性的肽鏈變成有活性的功能蛋白,這顯然是違背哲學(xué)基本原理的。換一個角度想,生物進化的過程本來就充滿著不定向的變異,這些變異中有適應(yīng)環(huán)境的,也有不適應(yīng)環(huán)境的,“物競天擇”,自然的選擇淘汰了那些不適應(yīng)的,保留了那些適應(yīng)的。蛋白質(zhì)分子的折疊不也與此類似嗎?我想,蛋白質(zhì)的一級結(jié)構(gòu)只是肽鏈折疊并形成功能蛋白的特定三維結(jié)構(gòu)的內(nèi)因,實際上,多肽鏈在形成活性蛋白的每一步,都有潛在的可能形成“不正確”的折疊,如果沒有象分子伴侶或其它幫助蛋白等外部因素的作用,多肽鏈也永遠不能折疊成為活性蛋百。)

三,分子伴侶的作用機制

分子伴侶的作用機制實際上就是它如何與靶蛋白識別,結(jié)合,又解離的機制。有的分子伴侶 具高度專一性,如一些分子內(nèi)分子伴侶,還有細菌Pseudomonas cepacia的酯酶,有它自己的“私有分子伴侶”。它是由基因limA編碼的,與酯酶的基因LipA只隔3個堿基,可能是進化過程中發(fā)生的基因分裂造成的。而一般的分子伴侶識別特異性不高,它是怎樣識別需要它幫助的對象的呢?現(xiàn)在只能說分子伴侶識別非天然構(gòu)象,而不去理會天然的構(gòu)象。由于在天然分子中,疏水殘基多半位于分子的內(nèi)部而形成疏水核,去折疊后就可能暴露出來,或者在新生肽段的折疊過程中,會暫時形成在天然構(gòu)象中本應(yīng)該存在于分子內(nèi)部的疏水表面,因此認為分子伴侶最有可能是與疏水表面相結(jié)合,如硫氰酸酶(Rhodanese)分子α-helix的疏水側(cè)面。但是只有β-sheet結(jié)構(gòu)的蛋白質(zhì)才可為分子伴侶識別。
最近關(guān)于識別機制有較大的進展。Bip是內(nèi)質(zhì)網(wǎng)管腔內(nèi)的分子伴侶,用一種affinity panning的方法檢查Bip與有隨機序列的十二肽結(jié)合的特異性,結(jié)果發(fā)現(xiàn),Hy-(W/X)-Hy-X-Hy-X-Hy motif與Bip j結(jié)合最強,Hy最多的是Trp、Leu、Phe,即較大的疏水殘基。一般來說,2-4個疏水殘基就足夠進行結(jié)合。還有一種較普遍的說法是分子伴侶識別所謂熔球體結(jié)構(gòu)(moltenglobule)。另一方面,分子伴侶本身與肽結(jié)合部位的結(jié)構(gòu)分析最近也有些進展。譬如,PapD的晶體結(jié)構(gòu)表明,多肽結(jié)合在它的 β-sheet區(qū)。GroEL中,約40kD的153-531結(jié)構(gòu)域是核苷酸的結(jié)合區(qū)。
分子伴侶作用的第二步是與靶蛋白形成復(fù)合物。非常盛行的一種模型認為分子伴侶常常以多聚`體形式而形成中心空洞的結(jié)構(gòu),用電子顯微鏡已經(jīng)觀察到由二圈層圓面包圈形組成的十四體GroEL分子和一個一層圓面包圈的七體GroES分子協(xié)同作用形成中空的非對稱籠狀結(jié)構(gòu)(cage model),推測靶蛋白可以在與周圍環(huán)境隔離的中間空腔內(nèi)不受干擾的進一步折疊。但是不久前一個日本實驗室發(fā)現(xiàn)GroEL的一個亞基,甚至其N端去除78個氨基酸殘基的50kD片段,已經(jīng)不能再組裝成十四體結(jié)構(gòu),都有確定的分子伴侶功能。由此,我想:也許環(huán)狀分子伴侶并非每個部位都是有效的結(jié)合部位,也就是說,該二層圓面包圈組成的十四體GroEL分子只有一個或若干個部位能夠與疏水殘基或所謂的熔球體結(jié)構(gòu)結(jié)合,而其余部位起識別作用,就像一個探測器一樣,整個十四體GroEL分子以圈層或籠狀結(jié)構(gòu)”包裹”在多肽鏈的主鏈上,以旋進方式再多肽鏈的鏈體上運動,一旦環(huán)狀多聚體的某一識別部位發(fā)現(xiàn)疏水結(jié)構(gòu)或所謂的熔球體結(jié)構(gòu)等新生肽鏈折疊過程中暫時暴露的錯誤結(jié)構(gòu),經(jīng)信號轉(zhuǎn)導(dǎo),多聚體的結(jié)合部位便與之結(jié)合,生成復(fù)合物,抑制不正確的折疊。以上完全是我個人的猜想,是基于上述兩個試驗現(xiàn)象的矛盾而試圖作一番解釋。至于為什么假設(shè)以旋進方式在多肽鏈上運動,我并沒有相應(yīng)的根據(jù),只是覺得這應(yīng)該是一個動態(tài)過程,因此作了一番狂妄的假想,另外,我覺得也許可以用X射線衍射來探測一下分子伴侶GroEL和GroES組成的籠狀結(jié)構(gòu),看看它的a×b×c是否足以容納多肽鏈的某一段,或者它的內(nèi)部和外部的疏水性質(zhì)和其他一些物化性質(zhì)如何,也許可以找到支持或駁斥上述假設(shè)的證據(jù)。
以上談的都是蛋白質(zhì)的分子伴侶。不久前又出現(xiàn)了一個新名詞“DNA chaperones”,DNA分子伴侶,這種分子伴侶是與DNA相結(jié)合并幫助DNA折疊的。在這種復(fù)合物中,DNA分子包圍在蛋白質(zhì)分子的表面,既是高度有序的,又是在一定程度上結(jié)構(gòu)已有所改變的。DNA與蛋白的這種相互作用對DNA的轉(zhuǎn)錄,復(fù)制以及重組都十分重要;或如在核小體中,對DNA的包裝是必須的。DNA在溶液中的結(jié)構(gòu)有相當(dāng)?shù)膭傂裕仨毧朔粋能障才能轉(zhuǎn)變成它的蛋白復(fù)合物中的結(jié)構(gòu),分子伴侶的作用就是幫助DNA分子進行折疊和扭曲,從而把DNA穩(wěn)定在一個適合于和蛋白結(jié)構(gòu)的特定構(gòu)型中。這種結(jié)合是協(xié)同的,可逆的在形成復(fù)合物之后便解離下來。因此,不論是DNA分子伴侶還是蛋白分子伴侶,都與DNA和蛋白的相互作用有關(guān),與基因調(diào)控有關(guān),看來,分子伴侶確實與最終闡明中心法則當(dāng)前主要問題有密切關(guān)系。

四、分子伴侶和酶的區(qū)別

與分子伴侶不同,以確定為幫助蛋白質(zhì)折疊的酶目前只有兩個,一個是蛋白質(zhì)二硫鍵異構(gòu)酶(protein disulfide isomerase,PDI); 另一個是肽基脯氨酸順反異構(gòu)酶(peptidyl prolyl cis-trans isomerase,PPI)。以PDI為例,眾所周知,蛋白質(zhì)分子中的二硫鍵與新生肽段的折疊密切相關(guān),對維系蛋白質(zhì)分子的結(jié)構(gòu)穩(wěn)定性和功能發(fā)揮也有重要作用。PDI定位在內(nèi)質(zhì)網(wǎng)管腔內(nèi),含量豐富,催化蛋白質(zhì)分子內(nèi)巰基與二硫鍵之間的交換反應(yīng)。同時,它是目前發(fā)現(xiàn)的最為突出的多功能蛋白,除了二硫鍵的異構(gòu)酶的基本功能外,它還是脯氨酸-4-羥化酶的α亞基;又是微粒體內(nèi)甘油三酯轉(zhuǎn)移蛋白復(fù)合物的小亞基,還是一種糖基化位點結(jié)合蛋白(gkycisylation site binding protein)等。其中,最引人注目的還是它有與多肽結(jié)合的能力,可以結(jié)合具有不同序列,長度和電荷分布的肽,特異性較低,主要是與肽的主鏈相作用,但對巰基尚有一些偏愛。按照分子伴侶的定義,一般認為PDI和分子伴侶是兩類不同的幫助蛋白,但是我國上海生物物理研究所最近提出不同的看法,認為蛋白質(zhì)二硫鍵異構(gòu)酶也具有分子伴侶的功能。
蛋白質(zhì)分子中天然二硫鍵的形成要求這些在肽鏈上往往處于不相鄰位置的巰基,首先通過肽鏈一定程度的折疊,才能相互接近到可以正確形成二硫鍵的位置。肽鏈的自身折疊是一個慢過程,而蛋白質(zhì)二硫鍵異構(gòu)酶催化蛋白質(zhì)天然二硫鍵的形成卻是一個快過程。另一方面,蛋白質(zhì)二硫鍵異構(gòu)酶具有低特異性的與各種不同肽鏈相結(jié)合的能力,在內(nèi)質(zhì)網(wǎng)中以極高的濃度存在,又是是一個鈣結(jié)合蛋白,是一個能被磷酸化的蛋白,這些都已經(jīng)符合了分子伴侶的條件。因此他們推測蛋白質(zhì)二硫鍵異構(gòu)酶很可能首先通過它與伸展的,或部分折疊的肽段的結(jié)合,阻止錯誤的折疊途徑,促進正確的中間物生成,幫助肽鏈折疊是相應(yīng)的巰基配對,從而是正確的二硫鍵得以形成;然后催化巰基的氧化或二硫鍵的異構(gòu)而形成天然二硫鍵。他們認為蛋白質(zhì)二硫鍵異構(gòu)酶的酶活性與它的分子伴侶功能不是相互排斥,而是密切相關(guān),協(xié)調(diào)統(tǒng)一的。分子伴侶與幫助新生肽鏈折疊的酶之間,大概不應(yīng)該,也不能夠劃一條絕對的分界線。我想:酶的最主要特性就是催化生化反應(yīng),分子伴侶的主要作用是與新生肽段的錯誤構(gòu)象結(jié)合,從而阻止肽鏈不正確的非功能的折疊途徑,促使其向正確的折疊方向反應(yīng),這難道不可以理解成間接的催化肽鏈的折疊嗎?從表觀上看,抑制不正確的折疊途徑等于加快了正確反應(yīng)的速度。所以,我本人也很贊成他們的觀點。最近的試驗已經(jīng)為這一假說提供了很好的證據(jù)。PDI明顯抑制變性的甘油醛-3-磷酸脫氫酶在復(fù)性股過程中的嚴重聚合,有效的提高它的復(fù)性效率,與典型的分子伴侶GroE系統(tǒng)對甘油醛3-磷酸脫氫酶復(fù)性的效應(yīng)極其相似。

五、分子伴侶的結(jié)構(gòu)

目前唯一解出晶體結(jié)構(gòu)的分子伴侶是E.coli的PapD,幫助鞭毛蛋白折疊的分子伴侶。還有HSP70的N端結(jié)構(gòu)域,即ATP結(jié)合域也以有晶體結(jié)構(gòu)。用電子顯微鏡已經(jīng)清楚的看到了GroEL的十四聚體和GroEL的七聚體的四級結(jié)構(gòu), 象兩個圓形中空的面包圈疊在一起,用NMR以及各種溶液構(gòu)象變化是研究分子伴侶作用機制的有效手段。

六、分子伴侶研究的實際應(yīng)用

分子伴侶的研究成果必然會大大加深我們對生命現(xiàn)象的認識,同時也一定會增加我們與自然斗爭的能力和自身生存的能力。由于分子伴侶在生命活動的各個層次都具有重要作用,它的突變和損傷也必定會引起疾病,因此可以期望運用分子伴侶的知識來治療所謂的”分子伴侶病”。另一方面,利用對分子伴侶的研究成果從根本上提高基因工程和蛋白工程的成功率,也必將對大幅度提高人類生活水平起重要作用。
 

[ 參 考 書 目]

1. 李寶健 主編,面向21世紀生命科學(xué)發(fā)展前沿, 廣東科技出版社,1996年11月第一版:93-104頁
2.郝柏林 劉寄星 主編,理論物理與生命科學(xué),上?茖W(xué)技術(shù)出版社,1997年12月第一版:29-58頁
3.中國生物物理代表團,從第十三屆國際生物物理大會看生物物理學(xué)研究的現(xiàn)狀和趨勢, 生物物理學(xué)報,1999年 第十五卷 第四期:826-827 頁

 
[ 網(wǎng)刊訂閱 ]  [ 食品專題搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ] [ 返回頂部 ]

 

 
推薦圖文
推薦食品專題
點擊排行
 
 
Processed in 0.089 second(s), 17 queries, Memory 0.89 M